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Introduction
Modular Implicits is an extension to the OCaml language which enables ad-hoc 
polymorphism. By extending the OCaml module system, it allows you to write code 
that operates on a constrained set of types. The feature is roughly analogous to type 
classes in Haskell, traits in Rust, or interfaces in Java. This example illustrates what 
is possible:

module type Showable = sig
  type t
  val show : t -> string



end

implicit module Showable_Int = struct
  type t = int
  let show x = string_of_int x
end

implicit module Showable_List {S: Showable} = struct
  type t = S.t list
  let show xs = string_of_list S.show xs
end

let show {S: Showable} x = S.show x

let () =
  print_endline (show 5);
  print_endline (show [1; 2; 3])

Further details are given in the paper by Leo White, Frédéric Bour, and Jeremy 
Yallop in 2015, which first introduced modular implicits.

We worked on a variety of small projects. Mostly they involved taking advanced 
functional programming concepts from other languages (mainly Haskell), and 
reimplementing them in OCaml with modular implicits. We also added modular 
implicits to some existing OCaml code, to make it easier to use.

All the code we wrote is available to view on GitHub, under the modular-implicits 
organisation. They are also all packaged into our opam repository.

Along the way we were able to find and document some of the limitations in the 
design and implementation of modular implicits. We hope future developers can use 
this knowledge to make modular implicits better, so that it can potentially eventually 
be included in the main OCaml language.

Projects

imp
"imp" is a library which was originally mostly written by Leo White. It contained 
definitions of some fundamental functional programming abstractions. This includes 
interfaces for functors, monads, monoids, and basic operations like comparisons and 
converting objects to strings.

https://www.cl.cam.ac.uk/~jdy22/papers/modular-implicits.pdf
https://www.cl.cam.ac.uk/~jdy22/papers/modular-implicits.pdf
https://github.com/modular-implicits
https://github.com/modular-implicits
https://github.com/modular-implicits/modular-implicits-opam


It seems like Leo developed this library just for his own experimentation. We thought 
it could be more like a standard library for OCaml with modular implicits, so we 
cleaned up the code, and added some more useful concepts to it.

One of these concepts was monad transformers, with implementations of the reader 
and state monads. Once these were implemented we didn't bother with any others, 
because we knew they'd be possible. We might come back to this and add some 
more in future.

We found a limitation while trying to define the MonadTrans typeclass. The root 
cause of the problem is one of the fundamental differences between OCaml's 
module system and the typeclass system in Haskell. Most of the time, modules can 
be used to model typeclasses, but differences do exist. In OCaml, each instantiation 
of a module is considered a different "thing", so X {Y} is not the same as X {Y} if 
they were created in different places. This contrasts to Haskell, where if types X and 
Y are both the same, then X Y is always the same in all contexts.

Lenses
"lens" is a Haskell library mainly written by Edward Kmett. He gave a good 
introduction to the concepts it uses in his talk Lenses, Folds, and Traversals. We 
created a port of some of the core functionality to OCaml.

In Haskell, the lens library requires a lot of language extensions. However, almost all 
its functionality could be implemented in OCaml using just modular implicits. The 
biggest problem we encountered was the lack of module subtyping. More details are 
given in this GitHub issue.

Categories

The categories library is drawn from the data-category haskell library. Each category 
contains a GADT with two parameters representing the morphisms. This works very 
nicely within a category and morphism compositions can be cleanly expressed, with 
the type checker verifying all compositions have been handled. At the value level 
objects are represented by their identity morphisms.

The module for Functors is coded, however it is sadly not very useful as there is no 
satisfactory way to map types in OCaml and therefore the types of Functors you can 
implement are limited. 

Arrows

The arrows library is drawn from the Control.Arrows library in Haskell, is fully 
implemented and works well. The last step would be adding arrow do notation, but 
this would require adding major syntax to the compiler. 

https://hackage.haskell.org/package/transformers-0.6.1.1/docs/Control-Monad-Trans-Class.html#t:MonadTrans
https://www.youtube.com/watch?v=cefnmjtAolY
https://github.com/ocamllabs/ocaml-modular-implicits/issues/62
https://hackage.haskell.org/package/data-category
https://hackage.haskell.org/package/base-4.18.0.0/docs/Control-Arrow.html


Data structures 

This is the beginnings of a library to create data structures which operate implicitly, 
and don’t need to be defined in advance. Currently Set and Map from the OCaml 
standard library have been implemented.

Automatic differentiation 

The auto differentiation library is drawn mostly from the paper Beautiful 
Differentiation. The library allows you to construct functions operating on numbers, 
such as 

let add {F : Floating} x y = x + y

and then differentiate them automatically. You can then pass the d data type to this 
function and it will track the derivatives for you, as a forward pass.
 
Backporting let binding syntax

OCaml 4.08 introduced let-binding operators, which make it much more convenient 
to write code that uses monads. However, the Modular Implicits fork is based on 
OCaml 4.03, so it lacks that feature. We decided it would be very useful to have 
binding operators available for our work, so we backported it. The backport was only 
a "minimal viable product", just making the changes compatible with the older 
codebase. We didn't add proper integration between modular implicits and let syntax, 
so the backport doesn't have support for binding operators which are defined 
polymorphically with modular implicits.

Generics

The generics library provides data types for representing any (non-recursive) 
algebraic data type. This was based on the GHC.Generics library in Haskell. 
Combined with modular implicits, it allows you to construct functions which work on 
any data type with a valid generic representation. The implementation of the generic 
interface could easily be derived by the compiler in future. When that is done, it 
would allow derivation of arbitrary type classes using pure OCaml, without needing 
to modify the compiler further.

Staged generics

BER MetaOCaml is another extension of the language, which adds support for 
staged programming. This is a system similar to macros in Lisp, which allows code 

http://conal.net/papers/beautiful-differentiation/beautiful-differentiation.pdf
http://conal.net/papers/beautiful-differentiation/beautiful-differentiation.pdf
https://v2.ocaml.org/manual/bindingops.html
https://hackage.haskell.org/package/base/docs/GHC-Generics.html
https://okmij.org/ftp/ML/MetaOCaml.html


to be generated using information that is not known until a later stage of program 
execution.

The standard generics approach is useful, but suffers from poor performance 
because all values must be converted to the "representation" type before you can do 
any generic operations on them. Staging can help with this, by generating code 
which can be specialised for each type, using a collection of type classes for each 
building block of algebraic types. For example, the Sum typeclass has operations for 
constructing values of each variant, and for pattern-matching. This is similar in aim, 
though not in implementation, to Jeremy Yallop's paper Staged Generic 
Programming.

compact

We created the library "compact" as an example use-case for staged generics. It 
encodes and decodes values of arbitrary types into opaque bunches of bits. (It 
currently only supports finite non-recursive types, though.) This could be useful for 
implementing binary trie data structures for non-integer user-defined types, for 
example for memoisation.

Compact is a bit like the serde library in Rust (which also provides generic 
serialisation and deserialisation for arbitrary types). Serde uses procedural macros to 
derive implementations for user-defined data types, but compact uses the staged 
generics interface, which is more declarative. Unlike serde, which requires just one 
line, you still have to manually write instances of Sum or Product to use compact. 
However, these instances could then be used for all kinds of generic code. In future, 
the compiler could automatically derive these generic instances, like how the Haskell 
compiler can derive Generic.

Staged tries

The staged tries library allows you to implement a mapping data structure with 
arbitrary user-defined data types as the keys, using generics to derive the 
implementation. This also uses staged generics.

We ran into another problem: the value restriction does not consider quoted 
expressions to be values, so they cannot be given polymorphic types. This meant we 
had to add some annoying redundant parameters of type unit to get the derived 
instances to work.

QuickCheck

https://dl.acm.org/doi/pdf/10.1145/3110273
https://dl.acm.org/doi/pdf/10.1145/3110273
https://serde.rs/
https://hackage.haskell.org/package/base/docs/GHC-Generics.html


This library is based on the Haskell quickcheck library. Implicits worked especially 
well for this library, it allows anything with the Testable property to be run on many 
test cases and analysed.

SearchM

searchM contains a highly general monadic Depth First Search implementation, 
similar to the search-algorithms library for Haskell. The code is hard to read as we 
tried to work around a compiler bug. 
 
Limitations

Here we explain in more detail some of the other limitations that we found. These 
would be good starting points for further work on the design and implementation of 
modular implicits.

"Any" parameterisation
This is easiest to understand with a code example. Here is a definition of a monoid:

module type Monoid = sig
    type t
    val empty : t
    val append : t -> t -> t
end

Now we would like to be able to write something like this (using hypothetical syntax):

implicit module List (type a) : Monoid with type t = a list
= struct
    type t = a list
    let empty = []
    let append = (@)
end

But modules can only be parameterised by modules, not types directly, so we have 
to declare a wrapper module type (called "Any") to hold the type:

module type Any = sig
    type t
end

implicit module List {A: Any} : Monoid with type t = A.t list
= (* ... *)

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/search-algorithms/docs/Algorithm-Search.html


This also means we have to declare an implicit instance of Any for all types we might 
want to use. Alternatively, instead of having a syntax for passing types directly to 
modules, the compiler could be extended to automatically derive an instance of Any 
for all types. (In fact, the compiler could possibly automatically derive instances of 
any module type that consists only of type definitions)

Compiler problems
The modular implicits compiler is not perfect, and we ran into several bugs and 
crashes which we had to work around. They are all listed as issues on the GitHub 
repository for modular implicits.

In addition, when using complicated systems of modules, the compiler became very 
slow. This was especially noticeable with lenses and staged generics. We would like 
to know if the compiler can be sped up for these cases, or if we could avoid the 
slowness by designing our module types more carefully.

Also, we often had difficulty using dune and other tools in the OCaml ecosystem, 
because the modular implicits compiler is based on a OCaml version 4.03, which is 
very old. It would be much easier to use if it were rebased on a modern version. We 
also wouldn't have had to backport the let-binding syntax, for example.

Structural typing of modules
In OCaml, modules are typed structurally, rather than nominally. This can cause 
problems with ambiguous instances in cases where the module signature is very 
simple, as it might be fitted by several instances by coincidence. For example, 
because Any has only type t, any other instance containing a type  called t will fit 
the pattern of Any, which could cause ambiguities in resolving the modular implicit. 
To avoid this, we added a special marker value called __any__ to Any, which is 
never used, but disambiguates those cases. This is called the "blessing signatures" 
pattern, which was first described in this talk by Jacques Garrigue and Frédéric Bour.

Bidirectional type inference in instance declarations
In Haskell, you can provide a more general type than is required for an instance 
method, and it will be automatically narrowed to fit the method's type as defined in 
the class. With modular implicits in OCaml though, you can't do that - the type of a 
method is only checked after it's defined, rather than being used to inform its inferred 
type.

Possible backwards compatibility issues due to having to name implicit 
modules
Unlike in Rust or Haskell, instances (implicit modules) have to be given names - and 
specific instances can be referred to explicitly using their names. This creates 
potential backwards compatibility issues, if a particular instance's derivation 
changes. In most languages, with type classes, this kind of change would be 

https://github.com/ocamllabs/ocaml-modular-implicits/issues
https://github.com/ocamllabs/ocaml-modular-implicits/issues
https://cambium.inria.fr/seminaires/transparents/20160314.Jacques.Garrigue.pdf


unobservable to code that just uses the instance, but in OCaml with modular 
implicits, user code might have named that instance explicitly, so changing its 
derivation would break that code.

This is not necessarily a big problem, but it's still something to be aware of.

Module subtyping
See the section on lenses

Module identity
See the section on monad transformers in the imp library

Value restriction on quoted expressions
See the section on staged tries

Evaluation
We both thoroughly enjoyed this internship. It was nice to have the freedom to work 
on broad problems in our own time, and put our technical and academic skills into 
practice. We have learnt a lot about how software engineering projects are really 
conducted, and practised our OCaml and functional programming.
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